您好,歡迎來到北京博普特科技有限公司!
Product center
植物病理學(xué)是研究植物病害的病原、發(fā)生、發(fā)展以及防治的一門應(yīng)用學(xué)科。它以植物病害為研究對(duì)象,探討發(fā)病的原因,或在解剖學(xué)、生理學(xué)或生物化學(xué)上,探討感染和癥狀出現(xiàn)的過程。為了確立防病和治病的方法,還研究形成病原的環(huán)境條件、病原體傳染途徑以及病害的診斷法等,另外還研究防病的藥劑對(duì)病原體或植物體的藥理作用,以及包括所有與植物病害有關(guān)的廣闊領(lǐng)域。多光譜成像系統(tǒng)是近年來出現(xiàn)的技術(shù),可廣泛應(yīng)用于植物病理學(xué)研究,利用丹麥Videometer公司生產(chǎn)的VideometerLab多光譜成像系統(tǒng)發(fā)表的文章多達(dá)數(shù)百篇,VideometerLab含19個(gè)多光譜波段以及可見光波段,同時(shí)實(shí)現(xiàn)光譜以及圖像成像。
中國的植物病理學(xué)是在生物學(xué)科中創(chuàng)建較早的一門學(xué)科,1917年就開始在高等農(nóng)林教學(xué)中設(shè)置植物病理學(xué)課程。1929年中國植物病理學(xué)會(huì)成立,中國植物病理學(xué)會(huì)2019年學(xué)術(shù)年會(huì)暨學(xué)會(huì)成立90周年慶祝大會(huì)剛剛在成都舉辦。20世紀(jì)20~40年代,中國植物病理學(xué)戴芳瀾、鄧叔群、朱鳳美、俞大紱等在研究中國真菌形態(tài)和分類,各主要作物的真菌、細(xì)菌和病毒病害,以及抗病育種等方面做出了貢獻(xiàn),在幾個(gè)高等農(nóng)業(yè)院校和研究所中建立了研究室,培養(yǎng)了許多植物病理學(xué)工作者,為中國植物病理學(xué)的發(fā)展奠定了基礎(chǔ)。
當(dāng)一株健全的植物受到干擾,導(dǎo)致器官和組織的生理機(jī)制局部的或系統(tǒng)的反常植物自身表現(xiàn)了病狀(symptom),并能從患病部位提取出的物質(zhì)具有相應(yīng)病原物的病征(sigh),就是發(fā)生了植物病害。干擾植物正常生理機(jī)制的因素,主要是外來的,內(nèi)在的因子導(dǎo)致遺傳性病害;外來的因子有的是非生物性的,有的是生物性的。因此,根據(jù)誘發(fā)病害因子的本質(zhì),植物病害可分為非侵染性病害和侵染性病害兩大類。
植物在長期的進(jìn)化歷程中,逐漸適應(yīng)了各種不斷變化的環(huán)境,產(chǎn)生了較強(qiáng)的適應(yīng)能力。但對(duì)各類環(huán)境因素的適應(yīng)能力有一定限度,如果植物所處的環(huán)境中某些物理如光照、水分、溫度或化學(xué)因素如營養(yǎng)元素失調(diào)再貨生存環(huán)境發(fā)生惡化,連續(xù)不斷影響植物,其強(qiáng)度又較過植物忍耐限度,就會(huì)對(duì)植物的生長發(fā)育產(chǎn)生不利影響,擾亂正常生理和代謝活動(dòng),甚至對(duì)植物造成嚴(yán)重傷害,使植物在生理和外觀上表現(xiàn)異常,產(chǎn)生病變。
侵染性病害是植物病原物在外界條件影響下相互斗爭并導(dǎo)致植物生病的病害具有感染性。常見的植物病原體有真菌如黑粉病、銹病、白粉病等;卵菌如腐霉、霜霉等;原核生物以細(xì)菌為主如土壤桿菌、支原體、衣原體等;病毒如馬鈴薯Y病毒、黃征病毒、煙草花葉病毒等;高等植物如菟絲子、列當(dāng)獨(dú)腳金等;原生動(dòng)物如線蟲。其中以細(xì)菌、真菌、病毒、支原體和線蟲誘發(fā)的病害較普遍和嚴(yán)重,尤以真菌性病害為較,如水稻的瘟病、小麥銹病、棉花的萎蔫病等。各種病原體的生理、生態(tài)、增殖方法和生活史以及侵染寄主的方式、途徑和時(shí)期各不相同。
多光譜顯微表型成像系統(tǒng)是一套能夠?qū)崿F(xiàn)微米級(jí)物體多光譜圖像采集的儀器,它不僅保持了顯微鏡對(duì)微小區(qū)域?qū)崟r(shí)成像的特點(diǎn),具備了采集該區(qū)域物體280~1050nm波段內(nèi)光譜以及RGB融合圖像的能力,可普遍應(yīng)用于微納光學(xué)、材料學(xué)、生物技術(shù)等領(lǐng)域。下圖為顯微光譜測(cè)量系統(tǒng)整機(jī)圖。
顯微光譜測(cè)量系統(tǒng)可分為三個(gè)模塊:照明模塊、光譜接收模塊以及成像模塊。照明模塊為10個(gè)-20個(gè)LED高功率光源組成,物體可獲得明亮且均勻的全場照明。光譜接收模塊以及成像模塊為CCD相機(jī),在測(cè)量光譜的同時(shí),可以實(shí)現(xiàn)物體圖像實(shí)時(shí)采集。
操作簡便:多光譜顯微表型成像系統(tǒng)同時(shí)具備多光譜測(cè)量和RGB測(cè)量功能模塊;該系統(tǒng)可實(shí)現(xiàn)對(duì)微小物體的區(qū)域選擇及定位(標(biāo)配成像面積為3cmX3cm),分辨率可達(dá)1um/像素;測(cè)量能力強(qiáng):具備傳統(tǒng)顯微鏡所不具備的顯微多光譜測(cè)量功能,傳統(tǒng)顯微鏡只能提供圖像的獲取,從而對(duì)物體進(jìn)行形貌分析,該系統(tǒng)額外具備目前*表型成像技術(shù),可對(duì)形態(tài)、尺寸等進(jìn)行有效測(cè)量,獲得物體的顯微多光譜信息。多光譜顯微表型成像系統(tǒng),在保有物體圖像采集的功能外,還可對(duì)物體進(jìn)行不同區(qū)域光譜的采集與分析,較進(jìn)一步的了解物體的紋理、結(jié)構(gòu)與特性;擴(kuò)展功能多:包含顯微尺度的透反射、熒光等顯微光譜測(cè)量,較大限度滿足各類的科研需求。
快速、無損檢測(cè)
包括處理在內(nèi)每樣品處理僅需10-20秒
與其它破壞性技術(shù)組合
高靈活性測(cè)量
主要專注:可重復(fù)洗、可追溯性、耐用性、可傳遞性
顯微熒光標(biāo)記檢測(cè)
VideometerMic多光譜顯微表型成像系統(tǒng)是一套突破性的多光譜成像系統(tǒng)。采用了少有的光譜成像檢測(cè)技術(shù)。在提高信噪比和多靶點(diǎn)標(biāo)記的檢測(cè)方面,*克服了傳統(tǒng)成像技術(shù)的限制??蓱?yīng)用于植物、細(xì)胞、基因或蛋白芯片等研究領(lǐng)域,是一套功能強(qiáng)大的成像系統(tǒng)。該基礎(chǔ)模塊包括10個(gè)-20個(gè)散射波段,波長范圍為280-1050nm,攝像頭可固定或移動(dòng),集成的多光譜傳感器安裝在XYZ平臺(tái)上,實(shí)現(xiàn)30cmX30cm的樣品自聚焦和掃描,可測(cè)量較小的樣品,可用于擬南芥種子、細(xì)菌、真菌、蟲卵、細(xì)胞等成像。
VideometerMic多光譜顯微表型成像系統(tǒng)將傳統(tǒng)多光譜成像系統(tǒng)升級(jí)為多光譜成像系統(tǒng)。該系統(tǒng)具有強(qiáng)大熒光標(biāo)記的檢測(cè)、分離和分析功能。在分析過程中,通過系統(tǒng)設(shè)置的激發(fā)光源組和內(nèi)置在10-20位濾波輪中的一系列濾波器激發(fā)植物樣品中各種發(fā)色團(tuán)的動(dòng)態(tài)熒光。樣品激發(fā)出的熒光經(jīng)顯微鏡放大后進(jìn)行熒光光譜分析和成像分。
VideometerMic多光譜顯微表型成像系統(tǒng)是目前功能強(qiáng)大、全面的多光譜顯微表型成像系統(tǒng),可以進(jìn)行微藻、單個(gè)細(xì)胞、單個(gè)葉綠體甚至基粒-基質(zhì)類囊體片段進(jìn)行圖像熒光分析;還能通過激發(fā)光源組進(jìn)行進(jìn)行任意熒光激發(fā)和熒光釋放波段的測(cè)量,從而進(jìn)行GFP、DAPI等熒光蛋白、熒光素以及藻青蛋白、藻紅蛋白、藻膽素等藻類*熒光色素的成像分析;較可以利用光譜儀對(duì)各種熒光進(jìn)行光譜分析,區(qū)分各發(fā)色團(tuán)。
VideometerMic多光譜顯微表型成像系統(tǒng)是一款跨越微觀與宏觀表型研究的系統(tǒng),結(jié)合了顯微鏡和多光譜表型成像特征,使科研工作者在細(xì)胞和亞細(xì)胞層次深入理解植物生理表型,VideometerLab 4的所有表型工具均適用于該系統(tǒng)。
專有設(shè)計(jì),實(shí)現(xiàn)微米級(jí)區(qū)域內(nèi)的透反射光譜測(cè)量、熒光光譜測(cè)量。
反射顯微多光譜測(cè)量:通常使用系統(tǒng)高功率LED燈作為照明光源,對(duì)接收到的反射光進(jìn)行采譜及分析。
透射顯微光譜測(cè)量:通常使用系統(tǒng)高功率LED燈作為照明光源,對(duì)接收到的透射光進(jìn)行采譜及分析。
熒光顯微光譜測(cè)量:系統(tǒng)自帶濾波輪,進(jìn)行熒光激發(fā)和分析。
系統(tǒng)放大可達(dá)40倍,可以清晰觀測(cè)到葉綠體及其發(fā)出的熒光,統(tǒng)計(jì)葉綠體數(shù)量等等。
激發(fā)光源組中包括紅光、藍(lán)光、綠光、白光、紫外光和遠(yuǎn)紅光等,通過紅藍(lán)綠三色光還可以調(diào)出可見光譜中的任何一種色光,能夠研究植物體中任何一種色素分子或發(fā)色團(tuán)。
高靈敏度CCD鏡頭
集成高分辨率多光譜能夠深入解析各種熒光的光譜圖。
熒光及明場多色標(biāo)記應(yīng)用領(lǐng)域;量子點(diǎn)探針的應(yīng)用領(lǐng)域;分子病理學(xué)研究領(lǐng)域;植物學(xué)研究領(lǐng)域;植物病理學(xué)領(lǐng)域;表型性狀分析/挖掘,基因型-表型關(guān)聯(lián);農(nóng)業(yè)育種;園藝學(xué)、農(nóng)業(yè)信息學(xué);果實(shí)品質(zhì)分析;植物病理研究;生物量分析;種子萌發(fā)研究;抗逆研究;植物應(yīng)用領(lǐng)域;顯微結(jié)構(gòu)的植物生理研究;植物逆境研究;生物和非生物脅迫的研究;植物抗脅迫能力及易感性研究;突變體篩選及光合機(jī)理研究;藻類長勢(shì)與產(chǎn)量評(píng)估;藻類*色素;植物—微生物交互作用研究;植物—原生動(dòng)物交互作用研究;基因工程與分子生物學(xué)研究 ;測(cè)量植物樣品;花粉分析;植物活體切片;植物表皮;植物細(xì)胞;綠藻、藍(lán)藻等各種單細(xì)胞和多細(xì)胞微藻;葉綠體提取液;類囊體提取液;含有葉綠體的原生動(dòng)物。
小麥?zhǔn)侵匾淖魑镏?,?duì)全球食品安全至關(guān)重要?!癟ake-all "根病害是由子囊菌真菌Gaeumannomyces tritici(Gt)致病,可穿透根并毀壞維管系統(tǒng)。形成的黑色壞死斑破壞了養(yǎng)分和水吸收,導(dǎo)致減產(chǎn)達(dá)60%。其它密切相關(guān)子囊菌真菌品種,例如G. hyphopodioides(Gh),卻是對(duì)抗“take-all"病的生物控制劑。
G.hyphopodioides可侵染外皮質(zhì)根層,但與“Take-all"不同,其不會(huì)侵入到中間部位,特征是在菌表面和亞皮下囊泡形成灰色菌絲。
來自英國的科學(xué)家研究重點(diǎn)是對(duì)高級(jí)成像技術(shù)進(jìn)行評(píng)估,以對(duì)根定植進(jìn)行真菌檢測(cè)和精確定量,通過測(cè)量光合參數(shù)評(píng)估對(duì)地上部健康的影響。研究中使用了VideometerLab 多光譜成像系統(tǒng)。
圖中顯示“Take-all"感染小麥幼苗。左側(cè)是原始圖像,有紅色箭頭標(biāo)示“take-all "損失,用手工評(píng)分;右圖是相同圖像經(jīng)‘VideometerLab’分析,將根組織分類為感病(藍(lán)色)和健康(桔色/黃色)。
具體實(shí)驗(yàn)步驟:
A 5-week time-course seedling pot bioassay was set up using 250g of soil from Webb’s Field on the Rothamsted Farm, UK.
An artificial inoculum layer derived from PDA plates contained Gt, Gh or an uncolonised control. The pots were baited with 10 seeds of the wheat c*r‘Hereward’, and kept in a controlled environment room. Each week, the pots were visually assessed for the presence of necrotic lesions, greying and vesicles. The level of infection was recorded as the proportion of roots showing at least one area of fungal colonisation, making this a semi-quantitative method of assessment. Potentially, imaging could provide a more efficient method to assess root colonisation, allowing the affected root area to be accurately quantified and also removing the subjectivity that can be associated with manual scoring. Consequently, a key question was: can multispectral imaging be used to quantitatively assess and distinguish between Gt and Gh seedling root colonisation?
Multispectral imaging was accomplished using a ‘VideometerLab’ imager, a system that uses 19 different wavelengths ranging from UV to the NIR. Training images were taken of healthy roots, and those colonised with Gt or Gh. These training images were used to build statistical transformations, which were subsequently used to score pixels as corresponding to healthy or colonised root tissue. The threshold pixel score chosen ensured that, in the case of Take-all, only the dark black lesions were scored. The ‘VideometerLab’ and visual assessments of Take-all colonised roots showed a significant correlation (Spearman’s Rank, Rs = 0.670, p = <0.001, n =24). Interestingly, whilst low, the Take-all scores for the uninoculated, control plants, were consistently higher using the image-based scoring. It is possible that the ‘VideometerLab’ was detecting other fungal colonisation phenotypes caused by contamination in the soil which were not visible to the human eye. The ‘VideometerLab’ struggled to distinguish the root greying caused by Gh from mild Take-all symptoms and preliminary analysis has shown that the root greying phenotypes associated with the presence of both fungal species have similar pixel scores across all wavelengths. However, the dark necrotic Take-all lesions had a distinct spectral signature, supporting the validity of our method for scoring Take-all.
Prior to harvesting the roots for the imaging described above, a LemnaTec ‘PhenoCenter’ was used to evaluate the impact of fungal root colonisation on above ground plant health. Specifically, a PAM fluorescence camera was used to evaluate photosynthetic efficiency in the foliage. This technique is based on the observation that light energy absorbed by photosystem II can be dissipated via three routes: photochemical reactions, dissipated heat or as fluorescence – it’s the competition between these processes which is exploited to quantify photosynthetic parameters. While a small reduction in photosynthetic efficiency was observed for the Take-all infected plants, no significant difference was observed between the Gh and control pots. These are encouraging results as it would be undesirable for Gh to impact photosynthetic efficiency if used as a biocontrol agent.
藜麥(Chenopodium quinoa)是一種作物,營養(yǎng)豐富,在多個(gè)國家廣有種植。真菌病如霜霉病限制了谷物產(chǎn)量,培育抗性品系,如抗霜霉病品系是藜麥育種的中心目標(biāo)。
利用常規(guī)RGB成像來測(cè)量藜麥對(duì)霜霉病的表型反應(yīng)(Peronospora variabilis ) 測(cè)量比較困難,原因在于來自不同藜麥基因型在葉片上有不同綠色和紅色斑點(diǎn)進(jìn)行干擾,參見圖1和圖2。
開發(fā)圖像分析規(guī)程來區(qū)分健康藜麥葉片組織以及感染霜霉病的藜麥葉片組織。研究利用Videometer多光譜成像系統(tǒng)對(duì)嚴(yán)重度程度表型和孢子形成進(jìn)行研究。
嚴(yán)重程度是葉片正面損傷的面積占整個(gè)葉片面積的百分比。依基因型不同,顏色可為桔色、黃色或紅色。
孢子形成是損傷部上方孢子量,以百分比測(cè)量,通過測(cè)量葉片正面進(jìn)行評(píng)估。
圖1 葉片正面嚴(yán)重度癥狀
圖2 葉片正面孢子形成
研究人員利用VideometerLab 4多光譜成像系統(tǒng)進(jìn)行多光譜成像,積分球確保對(duì)樣品的均一照明(圖3)。每個(gè)獲取的圖像層由19個(gè)不同圖像波段組成,波長涵蓋365nm(UVA)到970nm(NIR)。圖像的每個(gè)像素分辨率為~41 µm。每個(gè)圖像層的分辨率為2192X2192像素。
從G9基因型葉片正面(圖4)清楚看到了黃化現(xiàn)象(A),拍攝了RGB圖像(常規(guī)相機(jī),人眼可見光波段。(B)和(C)顯示了多光譜圖層中的2個(gè)波段,藍(lán)光490nm(B)和黃光570nm(C)。對(duì)健康植物組織和黃化界定進(jìn)行了初始標(biāo)記,轉(zhuǎn)換建立了模型(D),通過nCDA(歸一化典型判別分析將19個(gè)波段信息(圖像中多個(gè)圖層),轉(zhuǎn)換為了整個(gè)圖層的代表像素范圍值。之后切割(E和F),可用于所有圖像-所有品系和基因型,獲取有黃化組織(E黃色)百分比定量分析,該特定葉片比例為68.0%,或者包括紅色覆蓋孢子區(qū)(F),比例為18,9%,黃化(黃色)比例68%,孢子和黃化區(qū)綜合面積占比75.8%。
在葉片正面(底部),RGB圖像中的G9基因型清晰可見到孢子形成圖像(下底部A和B放大)。盡管在可見光波段很難檢測(cè)到單個(gè)波段,這里特別標(biāo)出了藍(lán)光波段(490nm)(C)。進(jìn)入NIR(780nm)波段(下左部的D和E放大),清晰看見了孢子。使用該信息(僅標(biāo)識(shí)黑灰色孢子)可幫助我們區(qū)分切割孢子像素(F),并將該面積定量,該葉片孢子比例為12.5% (黃色顯示),不包括黃化部分面積。
另外,此處的孢子標(biāo)識(shí)與正面圖像分析而言更加保守。 覆蓋的非黑灰區(qū)的像素部分 (像素比單個(gè)孢子要大)估計(jì),孢子比例為~23%(此處未予以顯示)。
圖4(A) sRGB圖像。(B),490nm(藍(lán)光),(C),570nm(黃色),(D) 轉(zhuǎn)換,(E)和(F),2種類型定量分割。
圖5(A) sRGB 圖像,(B)490nm(藍(lán)光),(C) 570nm(黃色),(D)轉(zhuǎn)換,(E)定量分割。
圖6:133個(gè)基因型的平均嚴(yán)重程度(%)分布
表1手工以及基于多光譜表型成像的藜麥霜霉病互作
研究對(duì)相關(guān)的132個(gè)藜麥基因型對(duì)霜霉病的表型反應(yīng)進(jìn)行了研究。設(shè)置了3個(gè)實(shí)驗(yàn),每個(gè)有4個(gè)區(qū)塊,配有復(fù)制控制樣品以及非復(fù)制基因型樣品。找到了對(duì)P. variablilis 反應(yīng)變異大的藜麥基因型,發(fā)現(xiàn)了基因型對(duì)互作有著顯著影響 (p-value = 1.18 x 10-18) 圖6。研究人員對(duì)圖像表型研究結(jié)果進(jìn)行了比較,研究人員正在開發(fā)適合覆蓋整個(gè)反應(yīng)的算法。該綜述中,研究者展示了與G9基因型相對(duì)應(yīng)的葉片圖像。結(jié)果總結(jié)在表1中,來不同區(qū)塊和試驗(yàn)的分屬不同植株的10片葉子取了平均值。
多光譜成像如嚴(yán)格按照規(guī)程使用、記錄完善的話,是非常強(qiáng)勁的表型工具。對(duì)圖像定量基于算法應(yīng)用,這需融合對(duì)疾病反應(yīng)的經(jīng)驗(yàn)和知識(shí)。對(duì)孢子形成,菌絲萌發(fā),滲透,侵染面積以及健康組織識(shí)別可提供更加近似的像素標(biāo)識(shí)。
目前研究人員已經(jīng)開發(fā)出了可應(yīng)用于藜麥霜霉病互作的應(yīng)用于損傷組織算法。
科學(xué)家開發(fā)了一種多光譜成像算法來評(píng)估小麥對(duì)鐮刀菌(F. graminearum and F. culmorum)的抗性。獲取結(jié)果與VDA方法視覺疾病評(píng)估)和qPCR方法進(jìn)行了比較。研究目標(biāo)是選擇新型、快速的表型方法來替換現(xiàn)有評(píng)價(jià)的VDA抗性評(píng)估方法。
視覺疾病評(píng)估方法與Videometer在不同生理階段對(duì)麥穗和群體的相關(guān)性(360-1050nm)
比RGB成像區(qū)分效果要好
VideometerLab® 以及傳送帶
2056x2056 像素/波段
1000粒種子掃描僅需5-10 min
感染鐮刀菌小麥粒 CDA圖像
基于典型判別分析(CDA)分析感染麥粒(黃/紅),未感染 (藍(lán)色)
-分類像素的閾值化
-Excel 結(jié)果輸出
實(shí)驗(yàn)設(shè)計(jì):
- 噴灑接種:F.graminearum & F. culmorum
- 冬小麥: 5栽培種 (抗性控制)
- 25 麥穗(2個(gè)重復(fù))(使用 VDA和 Videometer)
田間視覺評(píng)分:
360°C dpi : % 結(jié)痂小穗 ; % FDK
成熟 : % FDK
Videometer : % FDK
培養(yǎng)皿
-單穗:第1次重復(fù)25穗/cv
-散裝:≈從第2個(gè)重復(fù)的25個(gè)穗中收集1000粒/cv
傳送帶
?散裝≈從第二次重復(fù)的25個(gè)穗中收集1000粒/cv
qPCR
-5個(gè)品種≈第二次復(fù)制的1000粒/cv
-研磨每個(gè)品種的所有果仁,并從50 mg面粉中提取DNA
-具有特定TaqMan的qPCR® F.graminearum的探針
在不同生理期的不同個(gè)體麥穗和群體
% 結(jié)痂麥穗s & % FDK
單個(gè)麥穗 &群體
? Videometer: 培養(yǎng)皿 & 傳送帶
? 360°C dpi評(píng)分 & 成熟
VDA (360°C麥穗和麥粒成熟) 與Videometer在麥粒成熟度上有很強(qiáng)相關(guān)性,以下模塊:
?單獨(dú)麥穗& 群體
? Videometer帶培養(yǎng)皿和傳送帶
在其它試驗(yàn)中,用F. graminearum接種,觀察到了Microdochium spp自然侵染的微弱相關(guān)性。
2.qPCR, VideometerLab® 和VDA的疾病評(píng)估相關(guān)性。
在qPCR 于帶傳送帶的Videometer 評(píng)估群體采集麥粒之間有高度相關(guān)性(R=0.91),qPCR與 VDA 在 360°Cdpi也有高度相關(guān)性(R=0.95),驗(yàn)證了VideometerLab® 在成熟階段麥粒精確評(píng)估、快速定量鐮刀菌的能力,這與抗性分類相一致。
使用VideometerLab®集合開發(fā)算法,在評(píng)價(jià)感染鐮刀菌(Fusarium graminearum)和culmorum 的抗性時(shí)取得了很好的結(jié)果。更多時(shí)間將在更多品系小麥以及谷物上進(jìn)行。針對(duì)該應(yīng)用還可開發(fā)更多的算法。